

Knowledge Reuse Factors in the Innovation Process

INFORMS 2002

Ann Majchrzak

University of Southern California amajchrz@marshall.usc.edu

Lynne Cooper

Jet Propulsion Laboratory lynne.p.cooper@jpl.nasa.gov

Research Question

• What factors affect Knowledge Reuse for Radical Innovation (KRI)? Are the factors different than those used in Knowledge Reuse as Replication (KRR)?

KRR vs. KRI

- Knowledge reuse as replication (KRR)
 - Focus on replicating existing knowledge for a new group of users
 - Exploitation
 - Near transfer
 - Similar contexts
 - Problem to which knowledge applies is known
 - Knowledge "sources" can be identified

- Knowledge reuse for radical innovation (KRI)
 - Focus on creating new knowledge from existing knowledge
 - Exploration
 - Far transfer
 - Dissimilar contexts
 - Problem definition is evolving
 - Knowledge "sources" evolve

Research Design

- Inductive case study of KM episodes
- "Theoretical" sampling
 - Actual episodes of successful technical innovation
 - Innovation traceable and attributable to <u>reuse</u> of others' knowledge
 - Documents reviewed for 2 Mars instrument projects to identify 15 cases (episodes)
 - Arrayed cases from adopt to adapt (based on changes in form, fit, or function)
 - Selected 6; conducted interviews with key informants
 - Created timelines for each case and matrices across cases

Reuse example: Electrometer

Before: separate measuring device, and material, single sensor, large size, and temperature requirements

After: Integrated measuring device and material, half the size, multiple sensors, tolerant of extreme cold

LIDAR

11/17/02

INFORMS

6

Knowledge Reuse for Innovation Process

(Majchrzak, Cooper, & Neece, in review)

Innovator Behavior

- Iterate through stages
- Define problems to require innovation
- Decide to search
- Layer their search & evaluation
- Look for adapters
- Share knowledge thru co-development

(Majchrzak, Cooper, & Neece, in review)

Factors Affecting Knowledge Reuse for Innovation

Re-conceptualize Problem

- Characteristics of the individual
 - Deep knowledge: science goals, technology, inventing, ability to draw analogies
 - Openness: willing to consider non-traditional approaches and sources of knowledge
- Decision-making context
 - Competitive environment
 - Overall acceptable project risk

Decision to Search

- Insurmountable Performance Gap
 - Resulting from severe time and/or cost constraints
 - Admit they could not invent own solution and therefore considered reuse of others' knowledge

Awareness Scanning

- Identifying ideas with potential relevance to conceptual approach
 - Broader searches in non-traditional areas
 - Did not fit immediate form/fit/function
- Used wide variety of search methods
 - Internet, face-to-face visits, strong and weak ties
- Serendipity
 - Capitalizing on unexpected good-fortune due to a chance occurrence

Briefly Evaluate

- Rapid assessment of credibility, relevance, and adaptability
- Existence of meta-knowledge
 - E.g., Data, models, prototypes, contextual cues,
 availability of a source or third-party adaptor
 - Used to infer credibility, relevance, and potential for adaptation

In-Depth Analysis

- Determine if any of the ideas being considered could be adapted to meet the problem as formulated
- Meta-knowledge accessed, manipulated
 - Test ideas against the constraints and challenges of the model
 - Often involved hands on experimentation and extension

Full Development

- Shift from "is it feasible" to "make it work"
- Shared experience with sources and/or adaptors
 - Transfer of best practices (for less innovative solutions)
 - Co-development (for more innovative solutions)

Implications

- Three levels of search
 - Organizing knowledge resources for multi-level access
- Role of Meta-Knowledge
 - Describes the contexts, credibility of source, etc
 - Used differently (existence, access, manipulation)
 - Couple ideas with meta-K, organized around evaluation needs
 - Act as "chauffer" and "boundary object"
- Role of adapters
 - Absence of credible adaptors, or way to determine if adaptors are credible/available can create barrier to reuse
- Role of Project-level decisions
 - Cumulative risk
 - Can't look at reuse as isolated incidents

Practical Implications

- Encourage innovators to be open to non-traditional approaches, search in non-traditional areas, & use multiple search methods; consider "opportunity-recognizers"
- Structure ideas in knowledge bases to encourage self-chauffeuring through 3 layers with cues for existence of meta-knowledge
- Find people willing to be idea-adapters
- Increase awareness of insurmountable performance gaps with invention